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COMMENT 

Self-avoiding walks on diluted lattices near the percolation 
threshold 

Yup Kimt 
Department of Physics, Purdue University, West Lafayette, I N  47907, USA 

Received 16 January 1986, in final form 12 June 1986 

Abstract. Using the node-link picture of the infinite cluster near the percolation threshold, 
a crossover of the critical behaviour of the self-avoiding walks on the random lattice near 
the percolation threshold (or just above threshold) is suggested and a scaling function of 
this crossover is proposed. We compare the result of our qualitative argument with a 
Monte Carlo simulation result. 

Recently there has been considerable interest (Hiley et a1 1977, Chakrabarti and Kertesz 
1981, Kremer 1981, Harris 1983a, Kim 1983, Rammal et a1 1984, Kim and Khang 
1985) in self-avoiding walks (SAW) on the disordered lattice. This problem is a physically 
valuable model for the statistics of linear polymers on the random medium. The SAW 

consists of ( N  + 1 j monomers connected by N bonds of equal length. The main interest 
is the mean square radius of (R’) with well known results (de Gennes 1976) 

( R 2 ) -  N 2 ”  (1) 

where the exponent v is a universal quantity in each dimension d. Recently Chakrabarti 
and Kertesz (1981) argued that the exponent v is equal to on the disordered lattice 
regardless of dimension. However, for the weakly diluted lattice, by which we mean 
the random lattice far above the percolation threshold (Stauffer 1979, Essam 1980), 
Harris (1983aj has modified his criterion (Harris 1974) and has shown that v is the 
same as that in the undiluted case. Using a field-theoretic argument and the renormalisa- 
tion group E expansion Kim (1983) has also shown that the exponent on the weakly 
diluted lattice is the same as that on the non-random lattice. Kremer (1981) has done 
a simulation on the random diamond lattice and has found that on the weakly diluted 
lattice the exponent is the same as that in the non-random case. On the other hand, 
just above the percolation threshold he has found a crossover of the exponent v to a 
new higher one. In  contrast to the result of Kremer’s simulation Rammal er a1 (1984) 
have shown that the exponent v of SAW on the fractal lattices (Mandelbrot 1982) is 
smaller than that on the non-random lattice. If fractal lattices represent the backbone 
of the infinite cluster just above the percolation threshold (Gefen et al 1981), there is 
a contradiction between the analytical study on fractals and a numerical simulation. 
Although SAW on disordered lattices have been extensively studied, this somewhat 
contradictory problem has not yet been explained clearly. We therefore want to suggest 
a crossover model of SAW on random lattices just above the percolation threshold. 
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Our model is based on the qualitative, but physically plausible, picture for the backbone 
of the infinite cluster near percolation threshold. It is the purpose of this comment to 
study a physical origin of the crossover in order to invoke more exact studies on this 
subject. 

A very useful picture of a randomly diluted lattice which has been proposed by de 
Gennes (1976) and Skal and Shklovskii (1975) is as follows: for the diluted lattice just 
above the percolation threshold the lattice can be viewed as a collection of nodes 
which are connected by links which can be thought of as random paths (see figure 1). 
Two important lengths enter this picture. One is the distance between nodes which is 
of the order of the percolation correlation length 

(2) 
where p is the concentration of the occupied bonds (sites) of the diluted lattice, p c  is 
the critical concentration of the percolation transition (Stauffer 1979) and vp is the 
correlation length exponent of the percolation transition. The other important length 
is the length L of the random path between nodes which is given by the new exponent 
5 through 

5p - ( P  - Pd- ”p 

L -  ( P  - P P .  (3) 
Just above the threshold the backbone of the infinite cluster is built up by the anomalous 
(or ‘fractal’) region and normal region (Gefen et a1 1981). If the number of steps N 
of SAW is larger than L (or N > L ) ,  a dilute lattice would behave as a normal 
d-dimensional lattice. We call this the ‘normal’ regime. In normal regime, (R’)  is still 
given by (Flory 1969) 

( R 2 )  - N’“. (4) 

v n = 3 / ( 2 + d )  ( 5 )  

where v, is the same as the exponent in the non-random lattice which is given by 

in d dimensions. If N < L, the diluted lattice would behave anomalously like a fractal 
and we call this regime the anomalous regime. In anomalous regime, ( R 2 )  should be 
given by 

(R’) - N’’. (6) 

Figure 1. Node-link picture of the infinite cluster just above percolation threshold. 
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where va is the new ‘anomalous’ exponent. The scaling form for (R’) should be 

(R2)” ’ -  N ” q f [ N ( p  -pc)il  

f ( x )  + constant x + o  

f( x) -+ x ”n - X U ”  

if we consider the crossover around N - L. Here f ( x )  satisfies 

and 
X-+cO. 

One possible formula for v, is 

which is suggested by Rammal et a1 (1984) based on the explicit calculation on the 
special fractals. Here d ,  is the fractal dimension (Mandelbrot 1982) of the backbone 
of the infinite cluster and dB is the spectral dimension (Rammal er a1 1984) of the 
backbone. The fractal exponent vf based on (9) is smaller than v, in the normal regime. 
Another possible formula is 

va= vq-vp/{ (10) 
which is from the geometrical consideration for the node-link picture of the backbone 
of the infinite cluster (see figure 1). The reason for (10) is as follows. If N < L, 

( R 2 )  - 6; (11) 

(R*) -  N2v~’ i .  (12) 

as can be seen from figure 1. Then from (2) and (3), 

Using the numerical data for the various exponents (Harris 1983b) of percolation 
transition, we calculate the exponent vq in each dimension. The results for dimensions 
between 3 and 6 are displayed in table 1. We also display vf (Rammal et a1 1984) and 
v, for comparison. As is seen from table 1, the upper critical dimension of the 
crossover phenomena should be 6, because the exponent v of SAW in each regime is 
4 in six dimensions. In the normal regime the upper critical dimension is 4, because 
the critical phenomena of SAW in this regime is in the same universality class as that 
of the n = 0 n-vector model of magnetism (de Gennes 1979). However, in anomalous 
regime the upper critical dimension should be 6, because ( vq or vf) is in six dimensions. 
If  one succeeds in the exact formulation of the Landau-Ginzburg functional of SAW 

on the random lattice for renormalisation group E expansion for the dependable study 

Table 1. Exponents for self-avoiding walks near percolation threshold. 

Dimension 3 4 5 6 

UP 0.85 *0.02 0.66 * 0.02 0.5 1 i 0.02 2 

r 1.22 f 0.66 1.05 *0.04 1.02 1 
I I I 
I I T vn 0.6 

vq 0.70 f 0.03 0.63 0.56 2 

vf 0.57 * 0.02 

up and 
U, is from Flory’s formula (see ( 5 ) ) .  
vq is from (10). 
vf is from Rammal er al (1984). 

1 

I 

I 
0.49 f 0.03 ? I 

are taken from Harris (1983b). 
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of the crossover phenomena there might be a cubic term in the functional similar to 
the cubic term in the simple percolation transition (Harris et a1 1975) and this term, 
together with the normal functional of the n = O  n-vector model, might be able to 
explain the crossover phenomena near the percolation transition. This argument might 
be wrong, but it is very suggestive for the field-theoretic approach to S A W  on the 
disordered lattice. 

Using the similar scaling form to ( 7 )  and his simulation data Kremer estimated the 
crossover exponent in three dimensions which is nearly equal to our crossover exponent 
6. His new exponent v,,' which should be corresponding to v, in (6) is 0.65 and is very 
close to our vq which is derived from the node-link picture. Both Kremer's simulation 
result and our qualitative argument based on the node-link picture predict that the 
new exponent (i.e. vq) is larger than that in the normal regime (v"). In  contrast the 
exponent vf which has been derived by some renormalisatian group method on the 
specific fractals is smaller than v, in each dimension. However, in fractals two lattice 
points are multiply connected and thus vr should be smaller than v q ,  because in the 
node-link picture two lattice points are essentially simply connected. As was explained 
by Coniglio (1982) the fractal picture for the backbone of the infinite cluster gives 
good results in low dimensions, while the node-link picture fails to represent the 
cluster structure for the low dimensionality. Kremer's simulation result, in which the 
new exponent v, is larger than that in the normal regime, favours the node-link picture 
as far as SAW is concerned. In lower dimensions, especially in two dimensions, the 
node-link picture does not exist. In lower dimensions the fractal picture may be quite 
right for SAW. One should be careful to test discussions as above by simulations 
because the important lengths L and 6, diverge at the percolation threshold as one 
can see from (2) and ( 3 ) .  To test the crossover behaviour, one should take lattices 
large enough to see the crossover. 

An apparent difficulty in our model in lower dimensions (Dasgupta et al 1978, 
Stanley 1977, Coniglio 1982) is that the node-link picture is not good for the backbone 
of the infinite cluster. In  two dimensions the node-link picture cannot be used and 
we cannot apply our representation to SAW in two dimensions. That is why the expo- 
nents for the two dimensions are not displayed in table 1. Even in three dimensions, 
there may be several parallel paths between nodes and there may be several different 
physical lengths for the L of (3). Recently the nodes-links-blobs representation is 
believed to be more accurate for the backbone of the infinite cluster at the threshold 
(Stanley 1977, Coniglio 1982). This more advanced picture may be a good representa- 
tion for SAW in lower dimensions. However, the numerical data for Kremer's simulation 
show that the node-link picture is quite good for the higher dimensions, especially 
near the upper critical dimension 6 .  There are not enough data to tell which 
representation is valid for SAW on the random lattice and  in what dimension the new 
exponent v, in the anomalous regime becomes smaller than that of the normal regime. 
It is very important to study carefully the crossover phenomena by the simulation in 
each dimension between 2 and 6 .  

This work is supported in part by the Research Institute for Basic Sciences, Kyung 
Hee University, as a part of the Basic Sciences Research Institute Program, Ministry 
of Education. 
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